IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Adsorption and collapse of self-avoiding walks and polygons in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 6253
(http://iopscience.iop.org/0305-4470/29/19/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:01

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 6253-6264. Printed in the UK

Adsorption and collapse of self-avoiding walks and
polygons in three dimensions

Tereza Vrbo® and Stuart G Whittington
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S1A1

Received 20 March 1996, in final form 30 May 1996

Abstract. We consider self-avoiding walks and polygons on the simple cubic lattice, confined

to the half-space > 0 and interacting with the plane= 0. In addition there is a short-range
vertex—vertex interaction in the walk or polygon which can lead to a collapse transition. We
explore the interaction between collapse and adsorption in these systems, and discuss the form
of the phase diagram. Key results include a proof of the existence of an adsorption transition for
polygons for every value of the vertex—vertex interaction, a corresponding proof for walks when

the vertex—vertex interaction term is repulsive, and a proof that if polygons exhibit a collapse
transition, then the phase boundary between the expanded and desorbed phase and the collapsed
and desorbed phase must be a straight line.

1. Introduction

Self-avoiding walks on a regular lattice are a good model of the equilibrium properties
of linear polymer molecules in dilute solution in a good solvent, and lattice polygons
are a correspondingly good model of ring polymers. If near-neighbour interactions are
suitably weighted, the (infinite) walk is thought to undergo a transition which models the
internal transition in a polymer brought about by the dominance of attractive forces between
monomers at low temperatures. This transition has been studied theoretically for many years
(see e.g. Mazur and McCrackin 1968, Firetyal 1975, Ishinabe 1985, Saleur 1986, Privman
1986, Meirovitch and Lim 1989, Test al 1996a and many other papers), although there is
still no proof of theexistenceof the transition in this model. A transition has been proved
to exist in a directed version of this model in two dimensions (Brakl 1992).

Self-avoiding walks are also useful as a model of polymer adsorption. In this case one
considers a self-avoiding walk on (say) the simple cubic latdéewith the first vertex of
the walk at the origin and all other vertices having non-negatieeordinate. That is, the
walk is confined to the half-space> 0. Each vertex in the plane = 0 contributes an
additional energy term and, if this energy is attractive, the walk can be adsorbed onto the
planez = 0. In fact the desorbed phase is characterized by the mean fraction of vertices
in this plane going to zero as the number of vertices in the walk goes to infinity. For this
problem one can prove that a phase transition (the adsorption transition) exists (Hammersley
et al 1982), and derive bounds on the location of the transition. For a review of work on
this problem see De’Bell and Lookman (1993).

One can also consider the system in which the self-avoiding walk has an internal (vertex—
vertex) interaction term and also a vertex—plane interaction term, so that the system can
exhibit both a collapse transition and an adsorption transition. Rather less is known about
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6254 T Vrbow and S G Whittington

this problem although Monte Carlo work on adsorption at@point has appeared (Chang

and Meirovitch 1993), and there is an exact enumeration study in two dimensions which
investigates the form of the phase diagram (Fosteal 1992). In addition, the directed
version of this model (in two dimensions) has been extensively studied (Foster 1990, Foster
and Yeomans 1991, and references therein).

We shall be concerned with the three-dimensional version of this model. In section 2
we define the free energy for walks and polygons with both vertex—vertex and vertex—plane
interactions, and prove some results about the existence of the limiting free energy, using
methods related to those of Hammersketyal (1982). For all values of the interaction
parameters for polygons, and for certain ranges of values for walks, we prove that the free
energy is doubly convex and therefore continuous. In section 3 we investigate the form of
the phase diagram. We prove that there is an adsorption transition for polygons, for any
value of the vertex—vertex interaction, and we prove some partial results along these lines
for walks. In addition we discuss the form of the phase boundary between the desorbed-
expanded and desorbed—collapsed phases. We show, under certain mild assumptions, that
this phase boundary is a straight line, as found for directed models in two dimensions (Foster
1990, Foster and Yeomans 1991) and in an exact enumeration study of self-avoiding walks
in two dimensions (Fostest al 1992). This is in contrast to the work of Cattarinussi and
Jug (1991), who argued that this phase boundary would curve so that a collapse transition
could be induced by adsorption.

2. Convexity and continuity of the free energy

We begin by defining some notations. Lgtbe the number ofi-step self-avoiding walks
(or, for short, walks) orz3, and letp, be the number of (self-avoiding) polygons with
vertices, where in each case two walks or polygons are considered to be distinct if they
cannot be superimposed by translation. It is known that (Hammersley 1961)
lim n~tlog p, = lim n~tlogc, = k3 (2.2)

n—oo

n— o0

wheres is called theconnective constantf the lattice Z3.

A self-avoiding walk which starts at the origin, and has no vertices with negative
coordinate, is called positive walk(Hammersleyet al 1982) or atail (Silberberg 1967,
Cosgroveet al 1984). Let the number aof-step tails havingy + 1 vertices in the plane
z = 0 bec!(v). We say that such a tailisits the planez = 0 v + 1 times, or has + 1
visits A contactis an edge of the lattice which is not an edge of the walk or polygon but
which is incident on two vertices of the walk or polygon. Let the numbers-step walks
and polygons withk contacts be:, (k) and p, (k), respectively. Let the number afstep
tails with v + 1 visits andk contacts be;' (v, k).

Define the generating functio, (8) = Y, ¢, (k)e’*, Z%(B) = X", pa(k)e?*, ZF (@) =
Yo, 6 (ver and

ZHe. By =Y cf (v, k)t (2.2)
v,k

Clearly Z («) = Z} (e, 0).
We are interested in the properties of the corresponding limiting free energies, and we
next recall some results from the literature.

Theorem 2.1 (Hammersley et al 198Zhe limiting free energy
k(@) = lim n"tlog Z} () (2.3)
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exists for alla < oo and is a convex, monotone non-decreasing functiom.dfloreover,
k(o) = kT (0) = k3 Va <0 (2.4)
and
maxjks, k2 + o] <kt (@) < k3 +a VYo >0 (2.5)
wherexs is the connective constant @ and«, is the connective constant af.

This theorem implies that there is an adsorption transition £iféa) is non-analytic)
at some value of in the range (X o < x3 — k2. In fact Hammersleyet al (1982) prove
that the transition is neither at= 0 nor ata = k3 — k>.

For interacting walks and polygons (i.e. wigh 0) there are results about the existence
of the limiting free energy.

Theorem 2.2 (Tesi et al 1996bJhe limiting free energy
K°(B) = lim n~tlog Z°(B) (2.6)

exists for all < co and is a convex, monotone non-decreasing functioi.oMoreover,
the limiting free energy lin., . n~*log Z,(B) exists forg < 0 and is equal ta°(8) for
these values oB.

There is no proof of the existence of a collapse transition, although the numerical evidence
for a transition seems compelling.

We next consider the set of polygons withedges, with at least one edge in the plane
z = 0 and with no vertex having negativecoordinate. We call such polygommositive
polygons (Note that every polygon is a translation of a positive polygon.) Let the number
of n-edge positive polygons with+2 vertices in the plane = 0 andk contacts be, (v, k),
with the corresponding generating function

Z%a, B) =) palv, )&, @2.7)
v,k

We first prove that the corresponding free energy exists.
Theorem 2.3The limiting free energy

KO, B) = nleoon*1 log Z%(a, B) (2.8)
exists for alla < oo andp < oc.

Proof. For a polygon withn edges the maximum value ofis n — 2, and the maximum
value ofk is less than 2. Hence

n~tlog Z%(«, B) < max[log 6 log6+a,log6+28,log6+a +28] (2.9)

which is finite fore, 8 < co. Define theright (left) plane of a polygon to be the plane
containing vertices with the largest (smallestyoordinate. Let, (Y;) be the set of vertices

in the right (left) plane, having the largestcoordinate, and call the vertex i (Y;)

having the largest-coordinate theight (left) vertexof the polygon. Write(x,, y,, z,) for

the coordinates of the right vertex,§, and(x;, y;, z;) for the coordinates of the left vertex

(v;). The right vertex must be incident on either one or two edges which are in the right
plane, and these edges must be incident on one or both of the vertices with coordinates
(xr, y» — 1,z,) and (x,, y,, z- — 1). Similarly the left vertex must be incident on either
one or two edges in the left plane, and these edges must be incident on one or both of
the vertices with coordinates;, y; — 1, z;) and (x;, y;, z; — 1). If the polygon contains the
edge(x,, v, — 1, z,) — (x,, ¥, 2,), then that edge is theght edgeof the polygon, and we
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say that the right edge is ¢fpe 1 Otherwise the edge joining,, y,, z- — 1) to v, is the
right edge, and the right edge is tyjpe 2 We define thdeft edgeas the edge joining,
to (x;, y — 1, z;), if that edge is in the polygon (and the edge is then of type 1). Otherwise
it is the edge joiningy; to (x;, v,z — 1), and the edge is of type 2. Polygons can be
subdivided into classes according to the values,of,, z;, a;, wherea, anda; are equal to
1 or 2 according to whether the right and left edges are of type 1 or 2. Each polygon can
be assigned two indicesand j according to the values af, ¢; andz,, a,, and we say that
such a polygon iof type(i, j). Let the number of polygons of typg, j) with n edges,
v + 2 visits andk contacts bep, (v, k, i, j). By symmetryp,(v,k,i, j) = p,(v,k, j, i).
A polygon of type(i, j) with n edges,v; + 2 visits andk; contacts can be concatenated
with a polygon of type(j, i) with n edges,v, + 2 visits andk, contacts by translating in
the (x, y)-plane so that the right edge of the first polygon is parallel to the left edge of the
second polygon, and these two edges are two lattice spaces apart. Deleting the right edge
of the first polygon and the left edge of the second polygon, and adding four edges to form
a new polygon, gives a polygon of tygé i) with 2n + 2 edgesk; + k» + 3 contacts, and
v1 + v2 + [ visits wherel = 2, 3 or 4, depending on how many of the added vertices are in
the planez = 0. Hence

Y parka iy Dpa —vik =k, jo ) < panya(v +1,k+3,i,0) (2.10)

v1,k1
wherel = 1(j) € {2, 3, 4}. If we setj =i (2.10) becomes

D paur ke, i i) pu(v — v1.k — k1, i,0) < pana( + 1L k+3.0,0)  (2.11)

v1,k1
with [ = (i) € {2, 3, 4}, depending again on the number of vertices of the left and right
edges which are in the plane= 0. This inequality, together with the fact that the partition
function is exponentially bounded above, is sufficient (Wilker and Whittington 1979) to
establish the existence of the limit

lim n~tlog Z%(«, B, i,i) = k%a, B, i, 1) (2.12)
where
Za, iy i) =Y palv, k, i, i) HFE, (2.13)
v,k

For a, g fixed, letig, jo be the lexicographically first values éf; such that the set of
polygons with these indices makes a contributiorZfga, g) at least as large as any other
class of polygons. We call this threost popular classand the corresponding set of indices
the most popular index setClearly, for the most popular index set,

Z3(a. B.io, jo) = Y pa(v. k. io, jo)& P > Z0(a, B)/M (2.14)
v,k
where M = M (n) = O(n?) is the number of possible pairs of valugs ;). We can now
rewrite (2.10) for the most popular class as
YN pawso(v + 1k + 3, do, i) P > [20(a, B. do. jo)]? (2.15)
v=0 k=0
wherel = I(jo) € {2, 3, 4}. Hence
k%, B, io, io) > lim supn~*log Z(, B, io, jo)

n—o0

> limsupn~tlog[Z%(a, B)/M (n)]

n—o0

= limsupn~tlog Z%(«, B). (2.16)

n— 00
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But clearly

Z%a, B) = Z2(a, B. io. io) (2.17)
so that

liminf n=log Zz%(a, B) > «%a, B, io, o). (2.18)
The theorem follows from (2.16) and (2.18) with(«, B) = «%(a, B, io, io). O

Theorem 2.4«%, B) is a doubly convex and continuous functioncofand 8.

Proof. Z%a, B) is monotone non-decreasing in bettand 8 and, since it is a polynomial
in e and €&, it is continuous and bounded in any closed interval. To prove that g, 5)
is doubly convex inx and 8 it is sufficient to show that
l0g Zp (s, 1) +log Zez. B2) _ | gzo (1t Pitpe)
2 2 2
Using Cauchy’s inequality we have
Z%a1, P Z0 (a2, Bo) = Z P (v1, ky)efrrthiks Z P (v2, kp)gr2vztreke

(2.19)

v1.ky v2,k2
a1+ oz B1+ B2 2
>
/[;pn(v,k)eXp< LR k)]
2
_ |:Z,? (06142-0!2’ /31;-,32>1| (2.20)

and, after taking logarithms, this establishes (2.19). Skfce, 8) is therefore the limit of
a sequence of convex functions, it must be convex, and therefore continuous @iaidy
1952). O

We next turn to some corresponding results for tails. In particular we are interested in
the existence of the limit lim..,n~tlog Z} (a, B). In fact we shall prove that the limit
exists for alle and for allg < 0.

Lemma 2.5The generating functio ' (o, 8) satisfies the bound

Z e, p) > ezl (o, p) (2.21)
so that

lim inf n~tlog Z ' (a, B) > k°a, B) (2.22)
for all o, B < o0.

Proof. Let (x;, y», 0) be the coordinates of the vertex of the polygon in the plare 0

with lexicographically smallestr, y)-coordinates. This vertex must be incident on at least
one edge and at most two edges in the plare 0. If there is one such edge we call it

the bottom edgeof the polygon. If there are two such edges, they will each be incident
on a second vertex, one of which has lexicographically smaller coordinates. We call the
corresponding edge the bottom edge. Each positive polygon can be converted to a tail by
deleting the bottom edge of the polygon. This construction decreases the number of edges
by unity, increases the number of contacts by unity, and leaves unchanged the number of
vertices in the plane = 0. Hence

e, k) = pupa(v — 1Lk —1). (2.23)

Multiplying both sides by & %% and summing over andk gives (2.21). Taking logarithms,
dividing by n and lettingr go to infinity, gives (2.22). d
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It will be convenient to work withx-unfolded tails, and loops, which we now define.
A tail with n edges is anc-unfoldedtail if, in addition to havingzo = 0 andz; > 0 for all
i < n, it satisfies the following conditions:

(i) xo=0, and

(i) xo < x; < x, forall i #0,n.

Note that this implies that the first and last edges are inctd&ection so, in particular,
z1 = 0. An x-unfolded tail withn edges is doop if it satisfies the additional condition
thatz, = 0. Note that, because the first and last edges are intheection, this means
thatz; = z,_1 = 0. Let c,:r;(v, k) andl, (v, k) be the numbers af-unfolded tails and loops
(respectively) withm edgesk contacts and + 1 vertices in the plane = 0. We define the
generating functions

Zha. p) =) clw, et (2.24)
v,k
and
Z(@. )=y l(v, ke (2.25)
v,k

We first prove that the thermodynamic limit exists for loops.
Lemma 2.6The limit lim,_, . n*log Z! («, B) = «'(a, B) exists for alla, B < oo.

Proof. Two loops can be concatenated by translating so that the last vertex of the first

loop is coincident with the first vertex of the second loop. The number of edges is additive

under this operation and no new contacts are formed. Not all loops can be constructed in
this way, so we have the inequality

bW k) =Yy (1, k)l (0 = v1, k — ko). (2.26)
v1 ky

Multiplying both sides by %% and summing over andk gives the super-multiplicative
inequality

Zh(a, B) = Z, (o, B)Z,,_, (o, B). (2.27)
This, together with the exponential upper bound

Z! (a, B) < max[@', 6'e™", 6'e/ @D gttt (2.28)
immediately gives the existence of the limit for all 8 < oo (Hille 1948). O

Next we relate the behaviour afunfolded tails and loops.

Lemma 2.7.The generating functions ok-unfolded tails and loops have the same
exponential behaviour, in that

nli_)moon’1 log Z: («, B) = llli_)moon’1 log Z (e, B) (2.29)
for all o, B < .
Proof. Since every loop is am-unfolded tail, we have the inequality

Z(a, B) < Zl(a, B). (2.30)

At fixed n the x-unfolded tails can be classified according to thesight #, which we
define as the-coordinate of their last vertex. Lef, (v, k, h) be the number of-unfolded
tails with n edges, + 1 visits, k contacts and height. An x-unfolded tail withn edges,
vy + 1 visits, k; contacts and height can be concatenated with anunfolded tail withn
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edges,y — vy + 1 visits, k — k; contacts and height, by reflecting the second tail in the
planex = x, (wherex, is the x-coordinate of the last vertex in the tail), and identifying
the last vertices of the two tails. The resulting object is a loop witre@gesy + 1 visits

if h =0, v+ 2 visits if h > 0, andk contacts. Summing ovér we have

1
Zon(v +q.k) > Z Z Zcﬁ(vl, k1, h)ch (v — v, k — kq, h). (2.31)
q=0 h

v1 kp
Multiplying both sides by %% and summing ovev andk gives
A+e*Z (@, B) > [Z(a, B (2.32)

Taking logarithms in (2.30) and (2.32), dividing lyand lettingn go to infinity, gives
(2.29). d

The next lemma gives an inequality between the free energies of loops and polygons.

Lemma 2.8For alla < oo and 8 < 0 the limiting free energies of polygons and loops are
related by the inequality

lim ntlog Z. («, B) < k%, B). (2.33)

Proof. We say that a loop is a-unfolded loopif the y-coordinates of the vertices of the
loop obey the inequalitiegy < y; < y, for all i such that O< i < n. We can convert a loop

to a y-unfolded loop by successive reflections in the planes ymin andy = ymax as in
Hammersley and Welsh (1962). The number of visits is unchanged by these reflections but
the number of contacts can decrease. If we wkifefor the set of loops witlh edges and

L}, for the corresponding set of-unfolded loops, then unfolding defines a surjection from

L, to L} but at most v members ofL, map to the same member of (Hammersley

and Welsh 1962). Leﬁ(v, k) be the number of-unfolded loops withv + 1 visits andk
contacts, with the corresponding partition function

ZiHe. By =Y _ 1w, e, (2.34)
v,k

Since the number of contacts cannot increase on unfolding we have the inequalities
ZH e, B) < Zy(@, B) < e®Y 2l (a, B) (2.35)

for o < oo andg < 0. For eachy-unfolded loop we define iteiidth asw = y, — yo, and
thesey-unfolded loops can be partitioned into classes according to their width. We write
l,il(v, k, w) for the number ofz-edge y-unfolded loops, withv 4+ 1 visits, k contacts and
width w. Each such loop can be concatenated with a loop having the same width, reflected
in the planex = x,, and suitably translated. If the first loop hagdgesy: + 1 visits andk;
contacts, and the second hagdges, + 1 visits andk, contacts, then the loop resulting
from this construction hasn2edgesv; + v, + 1 visits andk; + k» contacts. In addition its

first vertex is at the origin, its last vertex is on theaxis, and no vertex has negative
coordinate. These objects can be modified by deleting their first and last edges, and adding
edges(1,0,0) — (1, —1,0) and(x2,_1, 0, 0) — (x2,_1, —1, 0). These modified loops can be
partitioned into classes according to the valuewdt= x5, 1 — 1, and concatenated with a
member of the same class reflected in the plaae —1. The resulting object is a polygon.

If, in both stages of the construction, we only concatenate members from the most popular
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class (i.e. with the values ab andw’ which make the largest contribution to the partition
function at a fixed value o& and ) then we obtain the following inequality:

1 I (v, k) 1 (v1 — v2, k1 — ko)
n 3 k 2 DY
Pn(v, k) 4n? Z |: n n

(2.36)

n n

5 [L%(vs, ks) Ih(v — vy — vs,k—kl—ks)}

where the sum is over all values of, k1, v,, k2, vs, k3. Multiplying both sides of (2.36) by
vk summing ovew andk, taking logarithms, dividing by: and lettingn go to infinity
gives (2.33). O

Next we obtain an inequality for tails andunfolded tails.
Lemma 2.9For alla < oo andg <0

limsupn~tlog Z} (., B) < «H(a, B). (2.37)

n—o0o
Proof. Every tail can be unfolded by successive reflections in the planesxny, and
X = Xmax IN @ manner similar to that described in Hammersley and Welsh (1962). At most
ePWn different tails with n-edges map to the sameunfolded tail by this construction
(Hammersley and Welsh 1962). The number of visits is not changed by the unfolding
operation but the number of contacts can decrease. Hence, fo agy0 we have the
inequality

ZHe. p) < €Yzl (e, B) (2.38)
and the theorem follows after taking logarithms, dividingrbgind lettingn go to infinity. (]
Finally, these lemmas allow us to prove the following theorem:

Theorem 2.10The limiting free energies of tails and polygons are equal for all finite values
of o for all 8 < 0.

Proof. This comes from a combination of the above lemmas, which imply that

liminf n=tlog Z;" (a, B) = k° > k' = «* > limsupn~tlog Z} (o, B)  (2.39)
n—0oQ n—00
for all finite @ and all non-positive, so that lim_ ., n~log Z}(a, B) exists for these
values ofe and 8, and is equal ta%(a, B). O

This result extends a theorem due to Soteros (1992) which established this result for all
finite w at 8 = 0, ford > 2. Note that this result is not true in two dimensions (Whittington
and Soteros 1991, Soteros 1992).

In view of theorem 2.10, one might expect that the limiting free energies of tails and
polygons will be equal for all finite values afandg. The analogous question for interacting
walks and interacting polygons (without the presence of a surface) is still unresolved, but
Tesiet al (1996b) showed that if the mean number of contacts for an interacting polygon is at
least as large as for an interacting self-avoiding walk (fopa#t 0 and all sufficiently large
even values o#) then the thermodynamic limit exists for the walk problem, and the limiting
free energies are identical for walks and polygons. In order to state the corresponding
theorem for tails and polygons, we need some additional notation.
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Let (k)° and (k)* be the mean number of contacts in a polygon and tail, respectively,
at some fixed:, « and 8. Clearly

_ 3log Z(e, B)

0 . (2.40)
and
+
(k>+ — alOgZa’lﬂ(a”B) (2-41)

Theorem 2.11If (k)° > (k)* for all 8 > 0, for all sufficiently large evem, then the limit
lim, .« n~tlog Z; (a, B) exists for all finitee and B, and the value of the limit i8%(«, B).

Proof. The proof is an easy extension of the proof of theorem 2.8 in sl (1996b).

3. The form of the phase diagram

In this section we shall be concerned with some general features of the phase diagram in
the («, B)-plane for both walks and polygons. We begin by showing that polygons exhibit
an adsorption transition for every value gf< oo.

Lemma 3.1For every value o8 < oo, the limiting free energy®(«, g) is independent of
a forall o < 0.

Proof. Consider a positive:-gon. Suppose that the bottom edge is incident on the
vertices with coordinateéx,,, y,, 0) and(x,, v, 0). If we delete the bottom edge, translate
the polygon through unit distance in the positiyedirection, and add the three edges
(Xp» Y6, 0) — (x5, 5, D), (xpr, Yo, 0) — (xr, yir, 1) @nd (xp, y5, 0) — (x4, yir, 0), We obtain a
positive (n + 2)-gon with exactly two vertices in the plarre= 0. Moreover, the number
of contacts has increased by unity, so that

> pu. k) < pus2(0.k +1). (3.1)

Starting with a polygon withh + 2 edges and exactly two vertices in= 0 and reversing
the construction, at most polygons withn edges can have the same pre-image. Hence

Pra0k+1) <n Y pa(v, k). (3.2)
For everyB < oo and for everyae < 0
> a0k < 22 B) < Z20. ) =D > palw, ket (3.3)
k v k
Taking logarithms, dividing by: and lettingn — oo, and using (3.1), implies that
KO, B) = °(B) (3.4)
for all @ < 0 and for allg < oc. O

The next lemma concerns bounds on the free energw fer0 for all values off.
Lemma 3.2Fora > 0
maxk®(0, B). k2(B) + a] < ke, B) < k°(0, B) + (3.5)

wherex;(B) is the free energy of interacting polygons in the square laffite
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Proof. The monotonicity ofZ%«, g) implies that«°(0, g) < «°(a, B), for all g and all
positive«. By picking out one term in the sum we have

Y paln — 2, k)€ < 700, B) (3.6)
k

so that

%, ) = lim n~log >~ p? (ke + o = ka(B) + (3.7)
k

where p? (k) is the number ofi-gons in Z2 with k contacts. The existence of the limit
k2(B) follows by an argument similar to that given in theorem 2.1 of ®gsal (1996b).
This completes the proof of the lower bound. To obtain the upper bound we note that

Z(a, B) < €™ py(v, ket (3.8)
v,k

wherevmax = n — 2. The bound follows on taking logarithms, dividing byand letting
n — oo. O

Theorem 3.3The limiting free energy(a, B) is a non-analytic function of for every
value of 8 < oo, and the phase boundasy(8) is bounded by X «.(8) < k3 — k2 + 28
for g > 0.

Proof. From lemmas 3.1 and 3.2, there must be a non-analytic pi#t) characterized
by

a.() = maxfu|x(a, B) = k°(B)]. (3.9)

Note that«?(0, B) = «°(B). The above lemmas imply that @ o.(8) < «°(B) — k2(B).
But, for positives,

Z3(B) < Y palk)e” (3.10)
k

which implies thatc®(8) < k3 + 28. By monotonicity,x»(8) > k2, SO we have the bound
o (B) < k3 — k2 + 2. (3.11)

In particular, the phase boundasy(8) cannot have a vertical asymptote, i.e. there is a
singularity for every value of. O

We next turn to the shape of the phase boundary between the two desorbed phases.

Theorem 3.41f «%(B) is singular a8 = B, and if the phase boundaty.(8) is continuous
at 8 = Bo thenx®(a, B) is also singular a = B, for everya < a.(Bo).

Proof. Fix € > 0. Choosex such that

a < minfae(B)1B € [fo— €, fo +€]]. (38.12)

For each sucly, <%, B) = «°(B) for B € [Bo — €, Bo + €]. Thereforex®(«, ) is singular
at Bo. Furthermore, if the phase boundary is continuoug at By thene can be made
arbitrarily small sox can be taken to be arbitarily close ¢p(8o). O
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4. Discussion

We have proved a number of results about the form of the free energy for polygons which

have both a vertex—plane interaction and a vertex—vertex interaction. We have shown that
tails and polygons have the same free energy, for all values of the vertex—plane interaction,
when the vertex—vertex interaction is repulsive. The corresponding question when the

vertex—vertex interaction is attractive is still open, even in the absence of a surfacet(Tesi

al 1996b).

We have also established two important qualitative features of the phase diagram in
this two-variable model. We have shown that there is an adsorption transition for polygons
for all values of the vertex—vertex interaction parameter, and have deduced a bound on
the form of this phase boundary. We have also shown that, if polygons exhibit a collapse
transition (see Test al 1996b), then the phase boundary between the desorbed—expanded
and desorbed—collapsed phases is a straight line.

|
o« T
i

Figure 1. Hypothetical phase diagram for adsorption and collapse in three dimensions. The
boundary between the desorbed—expanded phase (l) and the desorbed—collapsed phase (lll) is
known to be a vertical line, and there is known to be an adsorption transition for all values

of B. The shape of the phase boundary between the adsorbed—expanded phase (ll) and the
adsorbed—compact phase (IV) is not well understood.

In figure 1 we show a sketch of the phase diagram in(thes)-plane which reflects

the information which we have deduced here, but contains other interesting features
which we have not addressed. The four phases shown are (I) desorbed—expanded, (Il)
adsorbed—expanded, (lll) desorbed—compact, and (IV) adsorbed—compact. There are several
interesting open questions. For instance, is there a phase transition in the adsorbed
regime between an expanded phase (Il) and a collapsed phase (IV) and, if so, what
is the shape of this phase boundary? Where does this phase boundary meet the phase
boundary corresponding to adsorption? Can anything be said about the order of the various
phase transitions? We are currently addressing some of these questions using Monte Carlo
methods.
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