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Abstract. We consider self-avoiding walks and polygons on the simple cubic lattice, confined
to the half-spacez > 0 and interacting with the planez = 0. In addition there is a short-range
vertex–vertex interaction in the walk or polygon which can lead to a collapse transition. We
explore the interaction between collapse and adsorption in these systems, and discuss the form
of the phase diagram. Key results include a proof of the existence of an adsorption transition for
polygons for every value of the vertex–vertex interaction, a corresponding proof for walks when
the vertex–vertex interaction term is repulsive, and a proof that if polygons exhibit a collapse
transition, then the phase boundary between the expanded and desorbed phase and the collapsed
and desorbed phase must be a straight line.

1. Introduction

Self-avoiding walks on a regular lattice are a good model of the equilibrium properties
of linear polymer molecules in dilute solution in a good solvent, and lattice polygons
are a correspondingly good model of ring polymers. If near-neighbour interactions are
suitably weighted, the (infinite) walk is thought to undergo a transition which models the
internal transition in a polymer brought about by the dominance of attractive forces between
monomers at low temperatures. This transition has been studied theoretically for many years
(see e.g. Mazur and McCrackin 1968, Finsyet al 1975, Ishinabe 1985, Saleur 1986, Privman
1986, Meirovitch and Lim 1989, Tesiet al 1996a and many other papers), although there is
still no proof of theexistenceof the transition in this model. A transition has been proved
to exist in a directed version of this model in two dimensions (Braket al 1992).

Self-avoiding walks are also useful as a model of polymer adsorption. In this case one
considers a self-avoiding walk on (say) the simple cubic latticeZ3, with the first vertex of
the walk at the origin and all other vertices having non-negativez-coordinate. That is, the
walk is confined to the half-spacez > 0. Each vertex in the planez = 0 contributes an
additional energy term and, if this energy is attractive, the walk can be adsorbed onto the
planez = 0. In fact the desorbed phase is characterized by the mean fraction of vertices
in this plane going to zero as the number of vertices in the walk goes to infinity. For this
problem one can prove that a phase transition (the adsorption transition) exists (Hammersley
et al 1982), and derive bounds on the location of the transition. For a review of work on
this problem see De’Bell and Lookman (1993).

One can also consider the system in which the self-avoiding walk has an internal (vertex–
vertex) interaction term and also a vertex–plane interaction term, so that the system can
exhibit both a collapse transition and an adsorption transition. Rather less is known about
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this problem although Monte Carlo work on adsorption at the2-point has appeared (Chang
and Meirovitch 1993), and there is an exact enumeration study in two dimensions which
investigates the form of the phase diagram (Fosteret al 1992). In addition, the directed
version of this model (in two dimensions) has been extensively studied (Foster 1990, Foster
and Yeomans 1991, and references therein).

We shall be concerned with the three-dimensional version of this model. In section 2
we define the free energy for walks and polygons with both vertex–vertex and vertex–plane
interactions, and prove some results about the existence of the limiting free energy, using
methods related to those of Hammersleyet al (1982). For all values of the interaction
parameters for polygons, and for certain ranges of values for walks, we prove that the free
energy is doubly convex and therefore continuous. In section 3 we investigate the form of
the phase diagram. We prove that there is an adsorption transition for polygons, for any
value of the vertex–vertex interaction, and we prove some partial results along these lines
for walks. In addition we discuss the form of the phase boundary between the desorbed–
expanded and desorbed–collapsed phases. We show, under certain mild assumptions, that
this phase boundary is a straight line, as found for directed models in two dimensions (Foster
1990, Foster and Yeomans 1991) and in an exact enumeration study of self-avoiding walks
in two dimensions (Fosteret al 1992). This is in contrast to the work of Cattarinussi and
Jug (1991), who argued that this phase boundary would curve so that a collapse transition
could be induced by adsorption.

2. Convexity and continuity of the free energy

We begin by defining some notations. Letcn be the number ofn-step self-avoiding walks
(or, for short, walks) onZ3, and letpn be the number of (self-avoiding) polygons withn
vertices, where in each case two walks or polygons are considered to be distinct if they
cannot be superimposed by translation. It is known that (Hammersley 1961)

lim
n→∞ n−1 logpn = lim

n→∞ n−1 logcn ≡ κ3 (2.1)

whereκ3 is called theconnective constantof the latticeZ3.
A self-avoiding walk which starts at the origin, and has no vertices with negativez-

coordinate, is called apositive walk(Hammersleyet al 1982) or atail (Silberberg 1967,
Cosgroveet al 1984). Let the number ofn-step tails havingv + 1 vertices in the plane
z = 0 be c+

n (v). We say that such a tailvisits the planez = 0 v + 1 times, or hasv + 1
visits. A contact is an edge of the lattice which is not an edge of the walk or polygon but
which is incident on two vertices of the walk or polygon. Let the numbers ofn-step walks
and polygons withk contacts becn(k) and pn(k), respectively. Let the number ofn-step
tails with v + 1 visits andk contacts bec+

n (v, k).
Define the generating functionsZn(β) = ∑

k cn(k)eβk, Z0
n(β) = ∑

k pn(k)eβk, Z+
n (α) =∑

v c+
n (v)eαv and

Z+
n (α, β) =

∑
v,k

c+
n (v, k)eαv+βk. (2.2)

Clearly Z+
n (α) = Z+

n (α, 0).
We are interested in the properties of the corresponding limiting free energies, and we

next recall some results from the literature.

Theorem 2.1 (Hammersley et al 1982).The limiting free energy

κ+(α) = lim
n→∞ n−1 logZ+

n (α) (2.3)
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exists for allα < ∞ and is a convex, monotone non-decreasing function ofα. Moreover,

κ+(α) = κ+(0) = κ3 ∀α 6 0 (2.4)

and

max[κ3, κ2 + α] 6 κ+(α) 6 κ3 + α ∀α > 0 (2.5)

whereκ3 is the connective constant ofZ3 andκ2 is the connective constant ofZ2.

This theorem implies that there is an adsorption transition (i.e.κ+(α) is non-analytic)
at some value ofα in the range 06 α 6 κ3 − κ2. In fact Hammersleyet al (1982) prove
that the transition is neither atα = 0 nor atα = κ3 − κ2.

For interacting walks and polygons (i.e. withβ 6= 0) there are results about the existence
of the limiting free energy.

Theorem 2.2 (Tesi et al 1996b).The limiting free energy

κ0(β) = lim
n→∞ n−1 logZ0

n(β) (2.6)

exists for allβ < ∞ and is a convex, monotone non-decreasing function ofβ. Moreover,
the limiting free energy limn→∞ n−1 logZn(β) exists forβ 6 0 and is equal toκ0(β) for
these values ofβ.

There is no proof of the existence of a collapse transition, although the numerical evidence
for a transition seems compelling.

We next consider the set of polygons withn edges, with at least one edge in the plane
z = 0 and with no vertex having negativez-coordinate. We call such polygonspositive
polygons. (Note that every polygon is a translation of a positive polygon.) Let the number
of n-edge positive polygons withv+2 vertices in the planez = 0 andk contacts bepn(v, k),
with the corresponding generating function

Z0
n(α, β) =

∑
v,k

pn(v, k)eαv+βk. (2.7)

We first prove that the corresponding free energy exists.

Theorem 2.3.The limiting free energy

κ0(α, β) = lim
n→∞ n−1 logZ0

n(α, β) (2.8)

exists for allα < ∞ andβ < ∞.

Proof. For a polygon withn edges the maximum value ofv is n − 2, and the maximum
value ofk is less than 2n. Hence

n−1 logZ0
n(α, β) 6 max[log 6, log 6+ α, log 6+ 2β, log 6+ α + 2β] (2.9)

which is finite for α, β < ∞. Define theright (left) plane of a polygon to be the plane
containing vertices with the largest (smallest)x-coordinate. LetYr (Yl) be the set of vertices
in the right (left) plane, having the largesty-coordinate, and call the vertex inYr (Yl)
having the largestz-coordinate theright (left) vertexof the polygon. Write(xr , yr , zr ) for
the coordinates of the right vertex (vr ), and(xl, yl, zl) for the coordinates of the left vertex
(vl). The right vertex must be incident on either one or two edges which are in the right
plane, and these edges must be incident on one or both of the vertices with coordinates
(xr , yr − 1, zr ) and (xr , yr , zr − 1). Similarly the left vertex must be incident on either
one or two edges in the left plane, and these edges must be incident on one or both of
the vertices with coordinates(xl, yl − 1, zl) and(xl, yl, zl − 1). If the polygon contains the
edge(xr , yr − 1, zr ) − (xr , yr , zr ), then that edge is theright edgeof the polygon, and we
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say that the right edge is oftype 1. Otherwise the edge joining(xr , yr , zr − 1) to vr is the
right edge, and the right edge is oftype 2. We define theleft edgeas the edge joiningvl

to (xl, yl − 1, zl), if that edge is in the polygon (and the edge is then of type 1). Otherwise
it is the edge joiningvl to (xl, yl, zl − 1), and the edge is of type 2. Polygons can be
subdivided into classes according to the values ofzr , ar , zl, al , wherear andal are equal to
1 or 2 according to whether the right and left edges are of type 1 or 2. Each polygon can
be assigned two indicesi andj according to the values ofzl, al andzr , ar , and we say that
such a polygon isof type(i, j). Let the number of polygons of type(i, j) with n edges,
v + 2 visits andk contacts bepn(v, k, i, j). By symmetrypn(v, k, i, j) = pn(v, k, j, i).
A polygon of type(i, j) with n edges,v1 + 2 visits andk1 contacts can be concatenated
with a polygon of type(j, i) with n edges,v2 + 2 visits andk2 contacts by translating in
the (x, y)-plane so that the right edge of the first polygon is parallel to the left edge of the
second polygon, and these two edges are two lattice spaces apart. Deleting the right edge
of the first polygon and the left edge of the second polygon, and adding four edges to form
a new polygon, gives a polygon of type(i, i) with 2n + 2 edges,k1 + k2 + 3 contacts, and
v1 + v2 + l visits wherel = 2, 3 or 4, depending on how many of the added vertices are in
the planez = 0. Hence∑

v1,k1

pn(v1, k1, i, j)pn(v − v1, k − k1, j, i) 6 p2n+2(v + l, k + 3, i, i) (2.10)

wherel = l(j) ∈ {2, 3, 4}. If we setj = i (2.10) becomes∑
v1,k1

pn(v1, k1, i, i)pn(v − v1, k − k1, i, i) 6 p2n+2(v + l, k + 3, i, i) (2.11)

with l = l(i) ∈ {2, 3, 4}, depending again on the number of vertices of the left and right
edges which are in the planez = 0. This inequality, together with the fact that the partition
function is exponentially bounded above, is sufficient (Wilker and Whittington 1979) to
establish the existence of the limit

lim
n→∞ n−1 logZ0

n(α, β, i, i) = κ0(α, β, i, i) (2.12)

where

Z0
n(α, β, i, i) =

∑
v,k

pn(v, k, i, i)eαv+βk. (2.13)

For α, β fixed, let i0, j0 be the lexicographically first values ofi, j such that the set of
polygons with these indices makes a contribution toZ0

n(α, β) at least as large as any other
class of polygons. We call this themost popular classand the corresponding set of indices
the most popular index set. Clearly, for the most popular index set,

Z0
n(α, β, i0, j0) =

∑
v,k

pn(v, k, i0, j0)e
αv+βk > Z0

n(α, β)/M (2.14)

whereM = M(n) = O(n2) is the number of possible pairs of values(i, j). We can now
rewrite (2.10) for the most popular class as∑

v>0

∑
k>0

p2n+2(v + l, k + 3, i0, i0)e
αv+βk > [Z0

n(α, β, i0, j0)]
2 (2.15)

wherel = l(j0) ∈ {2, 3, 4}. Hence

κ0(α, β, i0, i0) > lim sup
n→∞

n−1 logZ0
n(α, β, i0, j0)

> lim sup
n→∞

n−1 log[Z0
n(α, β)/M(n)]

= lim sup
n→∞

n−1 logZ0
n(α, β). (2.16)
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But clearly

Z0
n(α, β) > Z0

n(α, β, i0, i0) (2.17)

so that

lim inf
n→∞ n−1 logZ0

n(α, β) > κ0(α, β, i0, i0). (2.18)

The theorem follows from (2.16) and (2.18) withκ0(α, β) = κ0(α, β, i0, i0). �
Theorem 2.4.κ0(α, β) is a doubly convex and continuous function ofα andβ.

Proof. Z0
n(α, β) is monotone non-decreasing in bothα andβ and, since it is a polynomial

in eα and eβ , it is continuous and bounded in any closed interval. To prove that logZ0
n(α, β)

is doubly convex inα andβ it is sufficient to show that

logZ0
n(α1, β1) + logZ0

n(α2, β2)

2
> logZ0

n

(
α1 + α2

2
,
β1 + β2

2

)
. (2.19)

Using Cauchy’s inequality we have

Z0
n(α1, β1)Z

0
n(α2, β2) =

∑
v1,k1

pn(v1, k1)e
α1v1+β1k1

∑
v2,k2

pn(v2, k2)e
α2v2+β2k2

>
[ ∑

v,k

pn(v, k) exp

(
α1 + α2

2
v + β1 + β2

2
k

) ]2

=
[
Z0

n

(
α1 + α2

2
,
β1 + β2

2

)]2

(2.20)

and, after taking logarithms, this establishes (2.19). Sinceκ0(α, β) is therefore the limit of
a sequence of convex functions, it must be convex, and therefore continuous (Hardyet al
1952). �

We next turn to some corresponding results for tails. In particular we are interested in
the existence of the limit limn→∞ n−1 logZ+

n (α, β). In fact we shall prove that the limit
exists for allα and for allβ 6 0.

Lemma 2.5.The generating functionZ+
n (α, β) satisfies the bound

Z+
n (α, β) > eα+βZ0

n+1(α, β) (2.21)

so that

lim inf
n→∞ n−1 logZ+

n (α, β) > κ0(α, β) (2.22)

for all α, β < ∞.

Proof. Let (xb, yb, 0) be the coordinates of the vertex of the polygon in the planez = 0
with lexicographically smallest(x, y)-coordinates. This vertex must be incident on at least
one edge and at most two edges in the planez = 0. If there is one such edge we call it
the bottom edgeof the polygon. If there are two such edges, they will each be incident
on a second vertex, one of which has lexicographically smaller coordinates. We call the
corresponding edge the bottom edge. Each positive polygon can be converted to a tail by
deleting the bottom edge of the polygon. This construction decreases the number of edges
by unity, increases the number of contacts by unity, and leaves unchanged the number of
vertices in the planez = 0. Hence

c+
n (v, k) > pn+1(v − 1, k − 1). (2.23)

Multiplying both sides by eαv+βk and summing overv andk gives (2.21). Taking logarithms,
dividing by n and lettingn go to infinity, gives (2.22). �
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It will be convenient to work withx-unfolded tails, and loops, which we now define.
A tail with n edges is anx-unfolded tail if, in addition to havingz0 = 0 andzi > 0 for all
i 6 n, it satisfies the following conditions:

(i) x0 = 0, and
(ii) x0 < xi < xn for all i 6= 0, n.
Note that this implies that the first and last edges are in thex-direction so, in particular,

z1 = 0. An x-unfolded tail withn edges is aloop if it satisfies the additional condition
that zn = 0. Note that, because the first and last edges are in thex-direction, this means
that z1 = zn−1 = 0. Let c

‡
n(v, k) and ln(v, k) be the numbers ofx-unfolded tails and loops

(respectively) withn edges,k contacts andv + 1 vertices in the planez = 0. We define the
generating functions

Z‡
n(α, β) =

∑
v,k

c‡
n(v, k)eαv+βk (2.24)

and

Zl
n(α, β) =

∑
v,k

ln(v, k)eαv+βk. (2.25)

We first prove that the thermodynamic limit exists for loops.

Lemma 2.6.The limit limn→∞ n−1 logZl
n(α, β) = κl(α, β) exists for allα, β < ∞.

Proof. Two loops can be concatenated by translating so that the last vertex of the first
loop is coincident with the first vertex of the second loop. The number of edges is additive
under this operation and no new contacts are formed. Not all loops can be constructed in
this way, so we have the inequality

ln(v, k) >
∑
v1

∑
k1

ln1(v1, k1)ln−n1(v − v1, k − k1). (2.26)

Multiplying both sides by eαv+βk and summing overv andk gives the super-multiplicative
inequality

Zl
n(α, β) > Zl

n1
(α, β)Zl

n−n1
(α, β). (2.27)

This, together with the exponential upper bound

Zl
n(α, β) 6 max[6n, 6neαn, 6neβ(2n+1), 6neαn+β(2n+1)] (2.28)

immediately gives the existence of the limit for allα, β < ∞ (Hille 1948). �
Next we relate the behaviour ofx-unfolded tails and loops.

Lemma 2.7.The generating functions ofx-unfolded tails and loops have the same
exponential behaviour, in that

lim
n→∞ n−1 logZ‡

n(α, β) = lim
n→∞ n−1 logZl

n(α, β) (2.29)

for all α, β < ∞.

Proof. Since every loop is anx-unfolded tail, we have the inequality

Zl
n(α, β) 6 Z‡

n(α, β). (2.30)

At fixed n the x-unfolded tails can be classified according to theirheight, h, which we
define as thez-coordinate of their last vertex. Letc‡

n(v, k, h) be the number ofx-unfolded
tails with n edges,v + 1 visits, k contacts and heighth. An x-unfolded tail withn edges,
v1 + 1 visits, k1 contacts and heighth can be concatenated with anx-unfolded tail withn
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edges,v − v1 + 1 visits, k − k1 contacts and heighth, by reflecting the second tail in the
planex = xn (wherexn is the x-coordinate of the last vertex in the tail), and identifying
the last vertices of the two tails. The resulting object is a loop with 2n edges,v + 1 visits
if h = 0, v + 2 visits if h > 0, andk contacts. Summing overh we have

1∑
q=0

 l2n(v + q, k) >
∑

h

∑
v1

∑
k1

c‡
n(v1, k1, h)c‡

n(v − v1, k − k1, h). (2.31)

Multiplying both sides by eαv+βk and summing overv andk gives

(1 + e−α)Zl
2n(α, β) > [Z‡

n(α, β)]2. (2.32)

Taking logarithms in (2.30) and (2.32), dividing byn and lettingn go to infinity, gives
(2.29). �

The next lemma gives an inequality between the free energies of loops and polygons.

Lemma 2.8.For all α < ∞ andβ 6 0 the limiting free energies of polygons and loops are
related by the inequality

lim
n→∞ n−1 logZl

n(α, β) 6 κ0(α, β). (2.33)

Proof. We say that a loop is ay-unfolded loopif the y-coordinates of the vertices of the
loop obey the inequalitiesy0 6 yi 6 yn for all i such that 0< i < n. We can convert a loop
to a y-unfolded loop by successive reflections in the planesy = ymin andy = ymax, as in
Hammersley and Welsh (1962). The number of visits is unchanged by these reflections but
the number of contacts can decrease. If we writeLn for the set of loops withn edges and
L

‡
n for the corresponding set ofy-unfolded loops, then unfolding defines a surjection from

Ln to L
‡
n but at most eO(

√
n) members ofLn map to the same member ofL

‡
n (Hammersley

and Welsh 1962). Letl‡n(v, k) be the number ofy-unfolded loops withv + 1 visits andk

contacts, with the corresponding partition function

Zl‡
n (α, β) =

∑
v,k

l‡n(v, k)eαv+βk. (2.34)

Since the number of contacts cannot increase on unfolding we have the inequalities

Zl‡
n (α, β) 6 Zl

n(α, β) 6 eO(
√

n)Zl‡
n (α, β) (2.35)

for α < ∞ andβ 6 0. For eachy-unfolded loop we define itswidth asw = yn − y0, and
thesey-unfolded loops can be partitioned into classes according to their width. We write
l
‡
n(v, k, w) for the number ofn-edgey-unfolded loops, withv + 1 visits, k contacts and

width w. Each such loop can be concatenated with a loop having the same width, reflected
in the planex = xn and suitably translated. If the first loop hasn edges,v1 +1 visits andk1

contacts, and the second hasn edges,v2 + 1 visits andk2 contacts, then the loop resulting
from this construction has 2n edges,v1 + v2 + 1 visits andk1 + k2 contacts. In addition its
first vertex is at the origin, its last vertex is on thex-axis, and no vertex has negativey-
coordinate. These objects can be modified by deleting their first and last edges, and adding
edges(1, 0, 0) − (1, −1, 0) and(x2n−1, 0, 0) − (x2n−1, −1, 0). These modified loops can be
partitioned into classes according to the value ofw′ = x2n−1 − 1, and concatenated with a
member of the same class reflected in the planey = −1. The resulting object is a polygon.
If, in both stages of the construction, we only concatenate members from the most popular
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class (i.e. with the values ofw andw′ which make the largest contribution to the partition
function at a fixed value ofα andβ) then we obtain the following inequality:

pn(v, k) > 1

4n2

∑ [
l
‡
n(v2, k2)

n

l
‡
n(v1 − v2, k1 − k2)

n

]

×
[

l
‡
n(v3, k3)

n

l
‡
n(v − v1 − v3, k − k1 − k3)

n

]
(2.36)

where the sum is over all values ofv1, k1, v2, k2, v3, k3. Multiplying both sides of (2.36) by
eαv+βk, summing overv andk, taking logarithms, dividing byn and lettingn go to infinity
gives (2.33). �

Next we obtain an inequality for tails andx-unfolded tails.

Lemma 2.9.For all α < ∞ andβ 6 0

lim sup
n→∞

n−1 logZ+
n (α, β) 6 κ‡(α, β). (2.37)

Proof. Every tail can be unfolded by successive reflections in the planesx = xmin and
x = xmax, in a manner similar to that described in Hammersley and Welsh (1962). At most
eO(

√
n) different tails with n-edges map to the samex-unfolded tail by this construction

(Hammersley and Welsh 1962). The number of visits is not changed by the unfolding
operation but the number of contacts can decrease. Hence, for anyβ 6 0 we have the
inequality

Z+
n (α, β) 6 eO(

√
n)Z‡

n(α, β) (2.38)

and the theorem follows after taking logarithms, dividing byn and lettingn go to infinity.�

Finally, these lemmas allow us to prove the following theorem:

Theorem 2.10.The limiting free energies of tails and polygons are equal for all finite values
of α for all β 6 0.

Proof. This comes from a combination of the above lemmas, which imply that

lim inf
n→∞ n−1 logZ+

n (α, β) > κ0 > κl = κ‡ > lim sup
n→∞

n−1 logZ+
n (α, β) (2.39)

for all finite α and all non-positiveβ, so that limn→∞ n−1 logZ+
n (α, β) exists for these

values ofα andβ, and is equal toκ0(α, β). �

This result extends a theorem due to Soteros (1992) which established this result for all
finite α at β = 0, for d > 2. Note that this result is not true in two dimensions (Whittington
and Soteros 1991, Soteros 1992).

In view of theorem 2.10, one might expect that the limiting free energies of tails and
polygons will be equal for all finite values ofα andβ. The analogous question for interacting
walks and interacting polygons (without the presence of a surface) is still unresolved, but
Tesiet al (1996b) showed that if the mean number of contacts for an interacting polygon is at
least as large as for an interacting self-avoiding walk (for allβ > 0 and all sufficiently large
even values ofn) then the thermodynamic limit exists for the walk problem, and the limiting
free energies are identical for walks and polygons. In order to state the corresponding
theorem for tails and polygons, we need some additional notation.
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Let 〈k〉0 and 〈k〉+ be the mean number of contacts in a polygon and tail, respectively,
at some fixedn, α andβ. Clearly

〈k〉0 = ∂ logZ0
n(α, β)

∂β
(2.40)

and

〈k〉+ = ∂ logZ+
n (α, β)

∂β
. (2.41)

Theorem 2.11.If 〈k〉0 > 〈k〉+ for all β > 0, for all sufficiently large evenn, then the limit
limn→∞ n−1 logZ+

n (α, β) exists for all finiteα andβ, and the value of the limit isκ0(α, β).

Proof. The proof is an easy extension of the proof of theorem 2.8 in Tesiet al (1996b).

3. The form of the phase diagram

In this section we shall be concerned with some general features of the phase diagram in
the (α, β)-plane for both walks and polygons. We begin by showing that polygons exhibit
an adsorption transition for every value ofβ < ∞.

Lemma 3.1.For every value ofβ < ∞, the limiting free energyκ0(α, β) is independent of
α for all α 6 0.

Proof. Consider a positiven-gon. Suppose that the bottom edge is incident on the
vertices with coordinates(xb, yb, 0) and(xb′ , yb′ , 0). If we delete the bottom edge, translate
the polygon through unit distance in the positivez-direction, and add the three edges
(xb, yb, 0) − (xb, yb, 1), (xb′ , yb′ , 0) − (xb′ , yb′ , 1) and(xb, yb, 0) − (xb′ , yb′ , 0), we obtain a
positive (n + 2)-gon with exactly two vertices in the planez = 0. Moreover, the number
of contacts has increased by unity, so that∑

v

pn(v, k) 6 pn+2(0, k + 1). (3.1)

Starting with a polygon withn + 2 edges and exactly two vertices inz = 0 and reversing
the construction, at mostn polygons withn edges can have the same pre-image. Hence

pn+2(0, k + 1) 6 n
∑

v

pn(v, k). (3.2)

For everyβ < ∞ and for everyα 6 0∑
k

pn(0, k)eβk 6 Z0
n(α, β) 6 Z0

n(0, β) =
∑

v

∑
k

pn(v, k)eβk. (3.3)

Taking logarithms, dividing byn and lettingn → ∞, and using (3.1), implies that

κ0(α, β) = κ0(β) (3.4)

for all α 6 0 and for allβ < ∞. �

The next lemma concerns bounds on the free energy forα > 0 for all values ofβ.

Lemma 3.2.For α > 0

max[κ0(0, β), κ2(β) + α] 6 κ0(α, β) 6 κ0(0, β) + α (3.5)

whereκ2(β) is the free energy of interacting polygons in the square latticeZ2.
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Proof. The monotonicity ofZ0
n(α, β) implies thatκ0(0, β) 6 κ0(α, β), for all β and all

positiveα. By picking out one term in the sum we have∑
k

pn(n − 2, k)eα(n−2)+βk 6 Z0
n(α, β) (3.6)

so that

κ0(α, β) > lim
n→∞ n−1 log

∑
k

p(2)
n (k)eβk + α = κ2(β) + α (3.7)

wherep(2)
n (k) is the number ofn-gons inZ2 with k contacts. The existence of the limit

κ2(β) follows by an argument similar to that given in theorem 2.1 of Tesiet al (1996b).
This completes the proof of the lower bound. To obtain the upper bound we note that

Z0
n(α, β) 6 eαvmax

∑
v,k

pn(v, k)eβk (3.8)

wherevmax = n − 2. The bound follows on taking logarithms, dividing byn and letting
n → ∞. �

Theorem 3.3.The limiting free energyκ0(α, β) is a non-analytic function ofα for every
value ofβ < ∞, and the phase boundaryαc(β) is bounded by 06 αc(β) 6 κ3 − κ2 + 2β

for β > 0.

Proof. From lemmas 3.1 and 3.2, there must be a non-analytic pointαc(β) characterized
by

αc(β) = max[α|κ0(α, β) = κ0(β)]. (3.9)

Note thatκ0(0, β) = κ0(β). The above lemmas imply that 06 αc(β) 6 κ0(β) − κ2(β).
But, for positiveβ,

Z0
n(β) 6

∑
k

pn(k)e2nβ (3.10)

which implies thatκ0(β) 6 κ3 + 2β. By monotonicity,κ2(β) > κ2, so we have the bound

αc(β) 6 κ3 − κ2 + 2β. (3.11)

In particular, the phase boundaryαc(β) cannot have a vertical asymptote, i.e. there is a
singularity for every value ofβ. �

We next turn to the shape of the phase boundary between the two desorbed phases.

Theorem 3.4.If κ0(β) is singular atβ = β0 and if the phase boundaryαc(β) is continuous
at β = β0 thenκ0(α, β) is also singular atβ = β0 for everyα < αc(β0).

Proof. Fix ε > 0. Chooseα such that

α < min[αc(β)|β ∈ [β0 − ε, β0 + ε]] . (3.12)

For each suchα, κ0(α, β) = κ0(β) for β ∈ [β0 − ε, β0 + ε]. Thereforeκ0(α, β) is singular
at β0. Furthermore, if the phase boundary is continuous atβ = β0 then ε can be made
arbitrarily small soα can be taken to be arbitarily close toαc(β0). �
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4. Discussion

We have proved a number of results about the form of the free energy for polygons which
have both a vertex–plane interaction and a vertex–vertex interaction. We have shown that
tails and polygons have the same free energy, for all values of the vertex–plane interaction,
when the vertex–vertex interaction is repulsive. The corresponding question when the
vertex–vertex interaction is attractive is still open, even in the absence of a surface (Tesiet
al 1996b).

We have also established two important qualitative features of the phase diagram in
this two-variable model. We have shown that there is an adsorption transition for polygons
for all values of the vertex–vertex interaction parameter, and have deduced a bound on
the form of this phase boundary. We have also shown that, if polygons exhibit a collapse
transition (see Tesiet al 1996b), then the phase boundary between the desorbed–expanded
and desorbed–collapsed phases is a straight line.

Figure 1. Hypothetical phase diagram for adsorption and collapse in three dimensions. The
boundary between the desorbed–expanded phase (I) and the desorbed–collapsed phase (III) is
known to be a vertical line, and there is known to be an adsorption transition for all values
of β. The shape of the phase boundary between the adsorbed–expanded phase (II) and the
adsorbed–compact phase (IV) is not well understood.

In figure 1 we show a sketch of the phase diagram in the(α, β)-plane which reflects
the information which we have deduced here, but contains other interesting features
which we have not addressed. The four phases shown are (I) desorbed–expanded, (II)
adsorbed–expanded, (III) desorbed–compact, and (IV) adsorbed–compact. There are several
interesting open questions. For instance, is there a phase transition in the adsorbed
regime between an expanded phase (II) and a collapsed phase (IV) and, if so, what
is the shape of this phase boundary? Where does this phase boundary meet the phase
boundary corresponding to adsorption? Can anything be said about the order of the various
phase transitions? We are currently addressing some of these questions using Monte Carlo
methods.
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